Hitzeindex

aus Wikipedia, der freien Enzyklopädie

Der Hitzeindex oder Humidex (HI) ist eine in Einheiten der Temperatur angegebene Größe, die die gefühlte Temperatur auf Basis der gemessenen Lufttemperatur sowie der relativen Luftfeuchtigkeit beschreibt. Hintergrund ist deren gemeinsame Wirkung auf den menschlichen Organismus und das hierdurch bestimmte Wärmeempfinden, weshalb der Hitzeindex ein Ausdruck dafür ist, wie diese Faktoren in ihrer Kombination auf das tatsächliche Temperatur- und damit Wohlempfinden einer Person Einfluss nehmen. Dieser Einfluss wirkt über die Beeinträchtigung der Thermoregulation, insbesondere des Schwitzens, und hat eine maßgebliche Wirkung auf die individuelle Lebensqualität. Eine hohe Luftfeuchtigkeit behindert dabei die Transpiration über die Haut und wird daher in Kombination mit einer hohen Temperatur als schwüle Hitze wahrgenommen. Diese belastet den Kreislauf wesentlich stärker als eine trockene Hitze, weshalb beispielsweise Wüsten mit Temperaturen jenseits von 40 °C wesentlich leichter durch den Organismus verkraftet werden können, als Regenwälder mit einer wesentlich höheren Luftfeuchte, aber nur 30 °C.

Luftdruck

aus Wikipedia, der freien Enzyklopädie

Der Luftdruck eines beliebigen Ortes der Erdatmosphäre ist der hydrostatische Druck der Luft, der an diesem Ort herrscht. Er bezeichnet zudem die Gewichtskraft der Luftsäule, die auf der Erdoberfläche oder einem auf ihr befindlichen Körper steht.

Reduktion auf Meereshöhe

Der von einem Barometer gemessene Luftdruck hängt sowohl vom meteorologischen Zustand der Atmosphäre als auch von der Standorthöhe ab. Sollen die Angaben verschiedener Barometer in einem größeren Gebiet für meteorologische Zwecke untereinander verglichen werden (zum Beispiel um die Lage eines Tiefdruckgebiets oder einer Front zu bestimmen), so muss der Einfluss der Standorthöhen aus den Messdaten entfernt werden. Zu diesem Zweck werden die gemessenen Druckwerte auf eine gemeinsame Bezugshöhe, üblicherweise Meereshöhe, umgerechnet. Diese Umrechnung geschieht mittels einer Höhenformel. Das Umrechnen wird auch als Reduktion bezeichnet (auch wenn der Zahlenwert größer wird), da der Messwert dabei von unerwünschten Störeffekten befreit wird. Das Ergebnis ist der auf Meereshöhe reduzierte Luftdruck.

Luftfeuchtigkeit

aus Wikipedia, der freien Enzyklopädie

Die Luftfeuchtigkeit, oder kurz Luftfeuchte, bezeichnet den Anteil des Wasserdampfs am Gasgemisch der Erdatmosphäre oder in Räumen. Flüssiges Wasser oder Eis wird der Luftfeuchtigkeit folglich nicht zugerechnet.

Lufttemperatur

aus Wikipedia, der freien Enzyklopädie

Als Lufttemperatur wird jene Temperatur der bodennahen Atmosphäre bezeichnet, die weder von Sonnenstrahlung noch von Bodenwärme oder Wärmeleitung beeinflusst ist.

Die genaue Definition durch Wissenschafter und Techniker ist je nach Fachgebiet etwas verschieden. In der Meteorologie wird die Lufttemperatur in einer Höhe von zwei Metern gemessen, wofür die klassischen, weiß gestrichenen Wetterhütten in freier Umgebung dienen.

Taupunkt

aus Wikipedia, der freien Enzyklopädie

Der Taupunkt als Maß für die Luftfeuchtigkeit ist eine abgeleitete, keine real vorliegende Temperatur und als solche normalerweise niedriger oder gleich der tatsächlichen Lufttemperatur. Sind beide gleich, so ist die Luft mit Wasserdampf gesättigt. Ein Feuchtemaß ist er deshalb, weil er abhängig vom Wasserdampfgehalt der Luft ist. Wird mit Wasserdampf gesättigte Luft unter den Taupunkt abgekühlt, so tritt Kondensation ein, welche sich in Beschlagen, Nebel, Tau bzw. allgemein in Niederschlag äußert. Wichtig für die Kondensation von Wasserpartikeln und die Vermeidung von größer Übersättigung sind Aerosole als Kondensationskerne. Diese treten jedoch in der Regel überall in der Erdatmosphäre in ausreichender Anzahl auf, um größere Übersättigungen zu vermeiden. Eine Besonderheit tritt während der Übersättigung ein, dann liegt die Taupunkttemperatur höher als die Lufttemperatur.

Windchill

aus Wikipedia, der freien Enzyklopädie

Der Windchill (v. engl. wind chill „Windkühle“) beschreibt den Unterschied zwischen der gemessenen Lufttemperatur und der gefühlten Temperatur in Abhängigkeit von der Windgeschwindigkeit. Er ist damit ein Maß für die windbedingte Abkühlung eines Objektes, speziell eines Menschen und dessen Gesicht.

Dieser Effekt, selbst als wind chill factor bezeichnet, wird durch die konvektive Abführung (erzwungene Konvektion) hautnaher und damit relativ warmer Luft sowie der damit einhergehenden Erhöhung der Verdunstungsrate hervorgerufen. Die für den Phasenübergang des Wassers notwendige Energie wird dabei durch Wärmeleitung aus der Körperoberfläche abgezogen und kühlt diese dementsprechend. Der Wind hat daher die Wirkung, die Angleichung der Oberflächentemperatur des Körpers mit der Umgebungstemperatur der Luft zu beschleunigen, was Menschen als kühlend empfinden.

Zwar gilt dieser Effekt für jedwedes Objekt, das dem Wind ausgesetzt ist (also auch Pflanzen, andere Tiere, Gegenstände usw.), jedoch gelten für diese im Regelfall andere Bedingungen als für den Menschen. Die hierfür notwendigen gesonderten Formeln existieren aufgrund des Erstellungsaufwandes jedoch nicht, weshalb sich der Windchill fast immer auf den Menschen bezieht.

Bei hohen Temperaturen zeigt sich kein Windchill-Effekt, er wird daher nur für Temperaturen nahe oder unterhalb von 0 °C berechnet und bei höheren Temperaturen meist durch den Hitzeindex ersetzt.

WOLKENUNTERGRENZE

Die genaue Beobachtung und Vorhersage der Höhe der Wolkenuntergrenze (Wolkenbasis) ist speziell für den Sichflugverkehr besonders wichtig. Die Höhe kann mittels Wolkenscheinwerfer (veraltet) oder Ceilometer (Laufzeitmessung eines Licht- oder Radarimpulses) gemessen werden; in den Bergen ist die Bestimmung der ungefähren Höhe an bekannten Punkten der Topografie möglich. Auch aus der Steigzeit von Pilotballonen kann die Wolkenuntergrenze bestimmt werden, wenn die Steiggeschwindigkeit bekannt ist. Die Basis von Cumulus-Wolken kann auch aus der Taupunktsdifferenz bestimmt werden. In der internationalen Luftfahrt wird die Wolkenuntergrenze in Fuß (ft) angegeben: 100ft = 30,5m. Neben der Sichtweite ist die Höhe der Wolkenuntergrenze auch für den Instrumentenflug ein wichtiges flugmeteorologisches Element. Sie ist entscheidend dafür, ob ein Start bzw. eine Landung und damit ein Flug überhaupt möglich sind. Die Wolkenuntergrenze ist in ihrer Struktur sehr unterschiedlich; es können auch kurzzeitig größere Schwankungen auftreten. Tiefliegender Stratus oder Hochnebel hat meist eine diffuse Untergrenze. Cumulus hingegen haben eine glatte Untergrenze (=Kondensationsniveau); ihre Höhe weist nur Schwankungen im Tagesgang auf. Bei stärkerem und anhaltenden Niederschlag bilden sich unter der Wolke durch Verdunstung der fallenden Regentropfen Wolkenfetzen (stratus fractus) mit einem Bedeckungsgrad von 4 bis 7/8 und schwankenden Untergrenzen. Der Tagesgang der Höhe der CU-Wolkenuntergrenze hängt von der Jahreszeit (Ausmaß der Einstrahlung) und der Stabilität der Schichtung ab. Das Ansteigen der CU-Basis über die Mittagszeit ist auf die Vergrößerung der Taupunktsdifferenz (Spread) infolge der Erwärmung durch die Sonneneinstrahlung zurückzuführen. Nachts tritt der gegegenteilige Effekt auf: Die nächtliche Abkühlung infolge Ausstrahlung verringert den Spread, die Basis sinkt ab. Faustformel für die Berechnung der Höhe derWolkenuntergrenze von Quellwolken: Höhe in Meter = 122 mal Spread; Höhe in Fuß = 400 mal Spread.